๐ผ ๐ฉ๐๐๐ค๐ง๐ฎ ๐ค๐ ๐พ๐๐ฃ๐ฉ๐ค๐ง'๐จ ๐๐ช๐ข๐๐๐ง โต₀ ๐๐ฃ ๐ฉ๐๐ ๐๐ค๐ข๐ฅ๐ก๐๐ญ ๐จ๐ฅ๐๐๐ง๐ โ ▪️
Depuis je crois les annรฉes de collรจge รงa me tourmente que l'on ne puisse user de l'infini comme d'un nombre. Je nous ai donnรฉ le droit de le faire !
▪️
L'ex-Reine de l'ex-Satan qui รฉtait venue des Enfers pour tout faire pour m'empรชcher de travailler n'a rรฉussi qu'ร me donner l'occasion de prouver que tout handicap est surmontable!
▪️▪️▪️
๐ผ ๐ฉ๐๐๐ค๐ง๐ฎ ๐ค๐ ๐พ๐๐ฃ๐ฉ๐ค๐ง'๐จ ๐๐ช๐ข๐๐๐ง โต₀ ๐๐ฃ ๐ฉ๐๐ ๐๐ค๐ข๐ฅ๐ก๐๐ญ ๐จ๐ฅ๐๐๐ง๐ โ ▪️
๐น❗๐๐ป๐ถ๐๐ถ๐ฎ๐น ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐
1️⃣ Are the limit of an ordered sequence toward positive infinity +∞ and negative infinity - ∞ the same in the set โ of integers and in the set โ of real numbers? Or different?
2️⃣ What is the specific infinity it tends toward?
⌈ ?
⊨ ⊤| n ∈ โ • x ∈ โ • ๐๐๐ โ→ ͚= ๐๐๐ โ → ͚= ?
⌊
3️⃣ What about the realm of complex numbers then?
๐น๐๐
๐ถ๐ผ๐บ๐ & ๐ฑ๐ฒ๐ณ๐ถ๐ป๐ถ๐๐ถ๐ผ๐ป๐
๐น๐น Function identity ๐๐
The identify function maps a set member to itself.
⌈ def. ๐๐
Let ฮฆ be a set •
๐๐ฮฆ: ฮฆ→ฮฆ ⋅ ฯ ∈ ฮฆ ⋅ ฯ ↦ ฯ
⌋
๐น๐น Existence of โต₀ in โ⁺
We postulate the existence of the Cantor number โต₀ defined as the cardinal of the set of natural number.
⌈ def. โต₀ ≝ card(โ) ⌋
▪️
โต₀ must be greater than any integer.
⌈ Axiom [A1]
⊨ ∃โต₀ ⋅ ∀ n ∈ โ ⋅ n<โต₀
⌊
▪️
A corollary is that โต₀ must be an absorbing element for addition operation.
⌈ Axiom [A2]
⊨ โต₀ + 1 = โต₀ •
⌋
๐น๐น Continuity Theorem
Given a fonction ๐ over the real numbers ๐: โ → โ and a value ๐ ∈ โ , if the left limit of ๐ towards ๐ equals the right limit of ๐ towards ๐ then ๐ belongs to the definition domain of the function ๐.
⌈ [Continuity Theorem]
⊢ ∀๐: ๐๐๐(๐) ⊂ โ → โ ⋅ ∀ x ∈ ๐๐๐(๐) ⋅ ∀ a ∈ โ ⋅ ๐๐๐โ→₋โ ๐ = ๐๐๐โ→₊โ ๐ ⟹ ๐ ∈ ๐๐๐(๐)
⌋ ∎
๐น๐ง๐ต๐ฒ๐ผ๐ฟ๐'๐ ๐ง๐ต๐ฒ๐ผ๐ฟ๐ฒ๐บ๐
๐น๐น
The limit of identity function over the natural numbers ๐๐โ() towards positive infinity is โต₀:
⌈ Theorem [T1]
⊢ ๐๐๐โ→ ͚ ๐๐โ (n) = โต₀
⌋ (dem¹)
▪️
๐น๐น" black hole" theorems : โต₀ is an absorbing element for addition and soustraction operations in โ .
▪️
๐น๐น๐น Theorem [T2]: โต₀ is absorbing for addition operation + in โ .
⌈ Theorem [T2]
⊢ ∀n > 0 ∈ โ ⋅ โต₀ + n = โต₀
⌋ (dem. by recursivity ∵ [A2])
▪️
๐น๐น๐นTheorem [T3] : โต₀ is absorbing for substraction operation - in โ .
⌈ Theorem [T3]
⊢ ∀n > 0 ∈ โ ⋅ โต₀ - n = โต₀
⌋ (dem²)
▪️
๐น๐น๐น Theorem [T4] : โต₀ absorbs itself in addition operation.
⌈ Theorem [T4]
⊢ โต₀ + โต₀= โต₀
⌋ ∵ [T2] ∎
▪️
๐น๐น๐น Theorem [T5] : โต₀ absorbs itself in substraction operation.
⌈ Theorem [T5]
⊢ โต₀ - โต₀ = โต₀
⌋ (dem³)
▪️
๐น๐น๐น Theorem [T6] : identity through negation.
⌈ Theorem [T6]
⊢ โต₀ = -โต₀
⌋ (dem⁴)
▪️
๐น๐น๐นTheorem [T7]: negative infinity is โต₀.
⌈ Theorem [T7]
⊢ ∀ n ∈ โ ⋅ ๐๐๐โ→₋ ͚ ๐๐โ(n) = โต₀
⌋ (dem⁵)
▪️
๐น๐น Theorem [T8] : equality of limits at both plus and minus infinities.
⌈ Theorem [T8]
⊢∀ n ∈ โ ⋅ ๐๐๐โ→₊ ͚ ๐๐โ(n) = ๐๐๐โ→₋ ͚ ๐๐โ(n) = โต₀
⌋ ∴ [T1] ∧ [T7] ∎
▪️
๐น๐นTheorem [T9] : equality of limits toward infinity of the identity function over the natural and the real numbers.
Argument:
When one visualise the Riemann's Sphere it's "obvious" the line described by โ and the one described by โ must converge toward one same "point" ∞, since both curve are superposed.
⌈ Theorem [T9]
⊢ ∀ n ∈ โ ⋅ ∀ x ∈ โ ⋅ ๐๐๐โ→ ͚ ๐๐โ(n)= ๐๐๐โ→ ͚ ๐๐โ(x)
⌋ ∵ โ ⊂ โ ∎
▪️
๐น๐น Theorem [T10] : The limit of identity function over the real numbers ๐๐โ() towards infinity is โต₀.
⌈ Theorem [T10]
⊢ ∀ x ∈ โ • ๐๐๐โ→ ͚ ๐๐โ(x) = โต₀
⌋ ∵ [T9] ∧ [T1] ∎
▪️
๐น๐น Theorem [T11] : the Cantor infinity Aleph Zero โต₀ defined as the cardinal of the set of natural integers is a real number.
⌈
⊢ โต₀ ∈ โ
⌋ ∵ [T10] ∧ [Continuity Theorem]∎
▪️
๐น๐น Theorem [T12] : the Cantor infinity Aleph One โต₁ defined as the cardinal of the set of real number is a real number.
⌈ Theorem [12]
⊢ โต₁ ∈ โ
⌋ ∵ โต₁= 2 ^ โต₀ ∧ โต₀ ∈ โ ∎
▪️
๐น๐น Theorem [T13] : the complex Aleph Zero โต₀ + ๐ช⋅โต₀ = ๐ฆ^๐ช⋅โต₀ belongs to the complex plane โ .
⌈ Theorem [13]
⊢ ๐ฆ^ ๐ช⋅โต₀ ∈ โ
⌋ ∵ โต₀ ∈ โ ∎
▪️
๐น๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ ๐ฅ๐ถ๐ฒ๐บ๐ฎ๐ป๐ป'๐ ๐ฆ๐ฝ๐ต๐ฒ๐ฟ๐ฒ
The projective complex line โ¹(โ) called Riemann's Sphere defined as the set comprised of the complex plane โ and the Complex Aleph Zero is actually โ.
⌈ โ¹(โ) = โ ⌋ ∎
▪️
๐น๐๐
๐๐ฒ๐ป๐๐ถ๐ผ๐ป ๐๐ผ ๐ฎ๐ฟ๐ฏ๐ถ๐๐ฟ๐ฎ๐ฟ๐ ๐บ๐๐น๐๐ถ-๐ฑ๐ถ๐บ๐ฒ๐ป๐๐ถ๐ผ๐ป๐ฎ๐น ๐๐ฝ๐ฎ๐ฐ๐ฒ๐
It comes trivially that this result can be extended to any ๐-dimensional space:
⌈ {โ₁, ..., โโ} ∋ (โต₀¹, ..., โต₀โฟ) ⌋ ∎
๐น๐๐ฒ๐บ๐ผ๐ป๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป๐
๐น๐นdem¹: Demonstration of [T1]
Theorem: the limit of ๐๐() in โ is โต₀ •
⌈ dem¹
• ⊤ ?| [T1] ๐๐๐โ→ ͚ ๐๐โ (n) = โต₀
Let define ฮโ as the set of ordered integers from 0 to n.
⌈ n ∈ โ • ฮโ ≝ [1...n] ⌋
We have :
⌈ theorem [T1.T1]
⊨ card(ฮโ) = n
⌋ (dem. by recursivity)
and :
⌈ axiom [T1.A1]
⊨ ∀ n,ฮฒ ∈ โ • ๐๐๐โ→แตฆ ๐๐โ( n ) = ฮฒ
⌋
▪️
Let define ฮ ͚ as the set described by ฮโ when n tends toward ∞ :
⌈ def. ฮ ͚
ฮ ͚ ≝ [1.. ๐๐๐โ→ ͚ ๐๐โ(n)] = [1...∞]
⌋
⌈
[1...∞] describes the whole set of integers โ . Therefore:
⊨ [1...∞] = โ
⟹ ฮ ͚ = โ
⟹ card(ฮ ͚) = card(โ) ∵ [T1.T1]
⟹ card(ฮ ͚) = โต₀ ∵ [def. โต₀]
⌋
▪️
∴ ⌈ ⊨ ๐๐๐โ→ ͚ ๐๐โ(n) = โต₀ ∵ [T1.A1]⌋
∎⌋
▪️
๐น๐นdem²: Demonstration of [T3]
⌈ dem²
• ⊤ ?| [T3] ∀n > 0 ∈ โ ⋅ โต₀ - n = โต₀
[T2] ⟺ ∀n > 0 ∈ โ ⋅ โต₀ + n = โต₀
⟺ โต₀ + n - n = โต₀ - n
⟺ โต₀ = โต₀ - n
∴ ⊤| [T3]
∎⌋
▪️
๐น๐นdem³ : Demonstration of [T5]
⌈ dem³
• ⊤ ?| [T5] โต₀ - โต₀ = โต₀
∵ [T3] ∴ ๐๐๐โ→ ͚ ๐๐โ(โต₀ - n) = โต₀ =
= โต₀ - ๐๐๐โ→ ͚ ๐๐โ(n)
= โต₀ - โต₀
∴ ⊤| [T5]
∎⌋
▪️
๐น๐น dem4: Demonstration of [T6]
⌈ dem⁴
• ⊤ ?| [T6] โต₀ = -โต₀
[T6] ⟺ โต₀ + โต₀ = โต₀ -โต₀
⟺ โต₀ = โต₀ -โต₀ ⟺ ⊤| [T5]
∴ ⊤| [T6]
∎ ⌋
▪️
๐น๐นdem⁵: Demonstration of [T7]
⌈
• ⊤ ?| [T7] ∀ n ∈ โ ⋅ ๐๐๐โ→₋ ͚ ๐๐โ(n) = โต₀
Remind. [T1]: ๐๐๐โ→₊ ͚ ๐๐โ(n) = โต₀
∴ ๐๐๐โ→₋ ͚ ๐๐โ(n) = - [๐๐๐โ→₊ ͚๐๐โ(n)] = -โต₀ = โต₀
∎ ⌋
๐น ๐ฅ๐ฒ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ฐ๐ฒ๐
▪️ โต numbers - cardinality of well ordered infinite sets : https://en.m.wikipedia.org/wiki/Aleph_number
▪️ Riemann's Sphere : https://en.m.wikipedia.org/wiki/Riemann_sphere
▪️Logic symbols used in this article :
https://en.m.wikipedia.org/wiki/List_of_logic_symbols
๐ถ◾๐ธ▪️๐ถ⬛๐ธ⚜️๐ธ⬛๐ถ▪️๐ธ◾๐ถ
Commentaires
Enregistrer un commentaire