๐˜ผ ๐™ฉ๐™๐™š๐™ค๐™ง๐™ฎ ๐™ค๐™› ๐˜พ๐™–๐™ฃ๐™ฉ๐™ค๐™ง'๐™จ ๐™‰๐™ช๐™ข๐™—๐™š๐™ง โ„ต₀ ๐™ž๐™ฃ ๐™ฉ๐™๐™š ๐™˜๐™ค๐™ข๐™ฅ๐™ก๐™š๐™ญ ๐™จ๐™ฅ๐™๐™š๐™ง๐™š โ„‚ ▪️

Depuis je crois les annรฉes de collรจge รงa me tourmente que l'on ne puisse user de l'infini comme d'un nombre. Je nous ai donnรฉ le droit de le faire !
▪️
L'ex-Reine de l'ex-Satan qui รฉtait venue des Enfers pour tout faire pour m'empรชcher de travailler n'a rรฉussi qu'ร  me donner l'occasion de prouver que tout handicap est surmontable!
▪️▪️▪️

๐˜ผ ๐™ฉ๐™๐™š๐™ค๐™ง๐™ฎ ๐™ค๐™› ๐˜พ๐™–๐™ฃ๐™ฉ๐™ค๐™ง'๐™จ ๐™‰๐™ช๐™ข๐™—๐™š๐™ง โ„ต₀ ๐™ž๐™ฃ ๐™ฉ๐™๐™š ๐™˜๐™ค๐™ข๐™ฅ๐™ก๐™š๐™ญ ๐™จ๐™ฅ๐™๐™š๐™ง๐™š โ„‚ ▪️


๐Ÿ”น❗๐—œ๐—ป๐—ถ๐˜๐—ถ๐—ฎ๐—น ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ 
1️⃣ Are the limit of an ordered sequence toward positive infinity +∞ and negative infinity - ∞ the same in the set โ„• of integers and in the set โ„ of real numbers? Or different?
2️⃣ What is the specific infinity it tends toward?
⌈ ?
⊨ ⊤| n ∈ โ„• • x ∈ โ„ • ๐‘™๐‘–๐‘š โ‚™→ ͚= ๐‘™๐‘–๐‘š โ‚“ → ͚= ?
⌊ 
3️⃣ What about the realm of complex numbers then?

๐Ÿ”น๐—”๐˜…๐—ถ๐—ผ๐—บ๐˜€ & ๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐˜๐—ถ๐—ผ๐—ป๐˜€
๐Ÿ”น๐Ÿ”น Function identity ๐‘–๐‘‘
The identify function maps a set member to itself.
⌈ def. ๐‘–๐‘‘
Let ฮฆ be a set •
 ๐‘–๐‘‘ฮฆ: ฮฆ→ฮฆ ⋅ ฯ‡ ∈ ฮฆ ⋅ ฯ‡ ↦ ฯ‡
⌋ 
๐Ÿ”น๐Ÿ”น Existence of โ„ต₀ in โ„•⁺ 
We postulate the existence of the Cantor number โ„ต₀ defined as the cardinal of the set of natural number.
⌈ def. โ„ต₀ ≝ card(โ„•) ⌋ 
▪️
โ„ต₀ must be greater than any integer.
⌈ Axiom [A1]
⊨ ∃โ„ต₀ ⋅ ∀ n ∈ โ„• ⋅ n<โ„ต₀
⌊ 
▪️
A corollary is that โ„ต₀ must be an absorbing element for addition operation.
⌈ Axiom [A2]
⊨ โ„ต₀ + 1 = โ„ต₀ • 
⌋ 

๐Ÿ”น๐Ÿ”น Continuity Theorem

Given a fonction ๐‘“ over the real numbers ๐‘“: โ„ → โ„ and a value ๐‘Ž ∈ โ„ , if the left limit of ๐‘“ towards ๐‘Ž equals the right limit of ๐‘“ towards ๐‘Ž then ๐‘Ž belongs to the definition domain of the function ๐‘“.

 ⌈ [Continuity Theorem]
⊢ ∀๐‘“: ๐‘‘๐‘œ๐‘š(๐‘“) ⊂ โ„ → โ„ ⋅ ∀ x ∈ ๐‘‘๐‘œ๐‘š(๐‘“) ⋅ ∀ a ∈ โ„ ⋅ ๐‘™๐‘–๐‘šโ‚™→₋โ‚ ๐‘“ = ๐‘™๐‘–๐‘šโ‚™→₊โ‚ ๐‘“ ⟹ ๐‘Ž ∈ ๐‘‘๐‘œ๐‘š(๐‘“)
⌋ ∎ 

๐Ÿ”น๐—ง๐—ต๐—ฒ๐—ผ๐—ฟ๐˜†'๐˜€ ๐—ง๐—ต๐—ฒ๐—ผ๐—ฟ๐—ฒ๐—บ๐˜€
๐Ÿ”น๐Ÿ”น
The limit of identity function over the natural numbers ๐‘–๐‘‘โ„•() towards positive infinity is โ„ต₀:
⌈ Theorem [T1]
 ⊢ ๐‘™๐‘–๐‘šโ‚™→ ͚ ๐‘–๐‘‘โ„• (n) = โ„ต₀ 
⌋ (dem¹)
▪️
๐Ÿ”น๐Ÿ”น" black hole" theorems : โ„ต₀ is an absorbing element for addition and soustraction operations in โ„• .
▪️
๐Ÿ”น๐Ÿ”น๐Ÿ”น Theorem [T2]: โ„ต₀ is absorbing for addition operation + in โ„• .
⌈ Theorem [T2]
⊢ ∀n > 0 ∈ โ„• ⋅ โ„ต₀ + n = โ„ต₀ 
⌋ (dem. by recursivity ∵ [A2])
▪️
๐Ÿ”น๐Ÿ”น๐Ÿ”นTheorem [T3] : โ„ต₀ is absorbing for substraction operation - in โ„• .
⌈ Theorem [T3]
⊢ ∀n > 0 ∈ โ„• ⋅ โ„ต₀ - n = โ„ต₀ 
⌋ (dem²)
▪️
๐Ÿ”น๐Ÿ”น๐Ÿ”น Theorem [T4] : โ„ต₀ absorbs itself in addition operation.
⌈ Theorem [T4]
⊢ โ„ต₀ + โ„ต₀= โ„ต₀ 
⌋ ∵ [T2] ∎ 
▪️
๐Ÿ”น๐Ÿ”น๐Ÿ”น Theorem [T5] : โ„ต₀ absorbs itself in substraction operation.
⌈ Theorem [T5]
⊢ โ„ต₀ - โ„ต₀ = โ„ต₀ 
⌋ (dem³)
▪️
๐Ÿ”น๐Ÿ”น๐Ÿ”น Theorem [T6] : identity through negation.
⌈ Theorem [T6]
⊢ โ„ต₀ = -โ„ต₀ 
⌋ (dem⁴) 
▪️
๐Ÿ”น๐Ÿ”น๐Ÿ”นTheorem [T7]: negative infinity is โ„ต₀.
⌈ Theorem [T7]
⊢ ∀ n ∈ โ„• ⋅ ๐‘™๐‘–๐‘šโ‚™→₋ ͚ ๐‘–๐‘‘โ„•(n) = โ„ต₀
⌋ (dem⁵)
▪️
๐Ÿ”น๐Ÿ”น Theorem [T8] : equality of limits at both plus and minus infinities.
⌈ Theorem [T8]
⊢∀ n ∈ โ„• ⋅ ๐‘™๐‘–๐‘šโ‚™→₊ ͚ ๐‘–๐‘‘โ„•(n) = ๐‘™๐‘–๐‘šโ‚™→₋ ͚ ๐‘–๐‘‘โ„•(n) = โ„ต₀ 
⌋ ∴ [T1] ∧ [T7] ∎ 
▪️
๐Ÿ”น๐Ÿ”นTheorem [T9] : equality of limits toward infinity of the identity function over the natural and the real numbers.
Argument:
When one visualise the Riemann's Sphere it's "obvious" the line described by โ„• and the one described by โ„ must converge toward one same "point" ∞, since both curve are superposed.

⌈ Theorem [T9]
⊢ ∀ n ∈ โ„• ⋅ ∀ x ∈ โ„ ⋅ ๐‘™๐‘–๐‘šโ‚™→ ͚ ๐‘–๐‘‘โ„•(n)= ๐‘™๐‘–๐‘šโ‚“→ ͚ ๐‘–๐‘‘โ„(x) 
⌋ ∵ โ„• ⊂ โ„ ∎ 

▪️
๐Ÿ”น๐Ÿ”น Theorem [T10] : The limit of identity function over the real numbers ๐‘–๐‘‘โ„() towards infinity is โ„ต₀.
⌈ Theorem [T10]
⊢ ∀ x ∈ โ„ • ๐‘™๐‘–๐‘šโ‚“→ ͚ ๐‘–๐‘‘โ„(x) = โ„ต₀ 
⌋ ∵ [T9] ∧ [T1] ∎
▪️
๐Ÿ”น๐Ÿ”น Theorem [T11] : the Cantor infinity Aleph Zero โ„ต₀ defined as the cardinal of the set of natural integers is a real number.
⌈ 
⊢ โ„ต₀ ∈ โ„ 
⌋ ∵ [T10] ∧ [Continuity Theorem]∎ 
▪️
๐Ÿ”น๐Ÿ”น Theorem [T12] : the Cantor infinity Aleph One โ„ต₁ defined as the cardinal of the set of real number is a real number.
⌈ Theorem [12]
⊢ โ„ต₁ ∈ โ„ 
⌋ ∵ โ„ต₁= 2 ^ โ„ต₀ ∧ โ„ต₀ ∈ โ„ ∎
▪️
๐Ÿ”น๐Ÿ”น Theorem [T13] : the complex Aleph Zero โ„ต₀ + ๐˜ช⋅โ„ต₀ = ๐˜ฆ^๐˜ช⋅โ„ต₀ belongs to the complex plane โ„‚ .
⌈ Theorem [13]
⊢ ๐˜ฆ^ ๐˜ช⋅โ„ต₀ ∈ โ„‚ 
⌋ ∵ โ„ต₀ ∈ โ„ ∎ 
▪️

๐Ÿ”น๐—”๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜๐—ผ ๐—ฅ๐—ถ๐—ฒ๐—บ๐—ฎ๐—ป๐—ป'๐˜€ ๐—ฆ๐—ฝ๐—ต๐—ฒ๐—ฟ๐—ฒ

The projective complex line โ„™¹(โ„‚) called Riemann's Sphere defined as the set comprised of the complex plane โ„‚ and the Complex Aleph Zero is actually โ„‚.
⌈ โ„™¹(โ„‚) = โ„‚ ⌋ ∎ 
▪️

๐Ÿ”น๐—˜๐˜…๐˜๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป ๐˜๐—ผ ๐—ฎ๐—ฟ๐—ฏ๐—ถ๐˜๐—ฟ๐—ฎ๐—ฟ๐˜† ๐—บ๐˜‚๐—น๐˜๐—ถ-๐—ฑ๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐˜€๐—ฝ๐—ฎ๐—ฐ๐—ฒ๐˜€

It comes trivially that this result can be extended to any ๐‘›-dimensional space:

⌈ {โ„₁, ..., โ„โ‚™} ∋ (โ„ต₀¹, ..., โ„ต₀โฟ) ⌋ ∎

๐Ÿ”น๐——๐—ฒ๐—บ๐—ผ๐—ป๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€
๐Ÿ”น๐Ÿ”นdem¹: Demonstration of [T1]
Theorem: the limit of ๐‘–๐‘‘() in โ„• is โ„ต₀ •
⌈ dem¹
• ⊤ ?| [T1] ๐‘™๐‘–๐‘šโ‚™→ ͚ ๐‘–๐‘‘โ„• (n) = โ„ต₀ 
Let define ฮ›โ‚™ as the set of ordered integers from 0 to n.
⌈ n ∈ โ„• • ฮ›โ‚™ ≝ [1...n] ⌋
We have :
 ⌈ theorem [T1.T1]
 ⊨ card(ฮ›โ‚™) = n 
⌋ (dem. by recursivity)
and :
⌈ axiom [T1.A1]
⊨ ∀ n,ฮฒ ∈ โ„• • ๐‘™๐‘–๐‘šโ‚™→แตฆ ๐‘–๐‘‘โ„•( n ) = ฮฒ 
⌋ 
▪️
Let define ฮ› ͚ as the set described by ฮ›โ‚™ when n tends toward ∞ :
⌈ def. ฮ› ͚ 
 ฮ› ͚ ≝ [1.. ๐‘™๐‘–๐‘šโ‚™→ ͚ ๐‘–๐‘‘โ„•(n)] = [1...∞]
⌋ 
⌈ 
[1...∞] describes the whole set of integers โ„• . Therefore:
⊨ [1...∞] = โ„•
⟹ ฮ› ͚ = โ„• 
⟹ card(ฮ› ͚) = card(โ„•) ∵ [T1.T1]
⟹ card(ฮ› ͚) = โ„ต₀ ∵ [def. โ„ต₀]
⌋ 
▪️
∴ ⌈ ⊨ ๐‘™๐‘–๐‘šโ‚™→ ͚ ๐‘–๐‘‘โ„•(n) = โ„ต₀ ∵ [T1.A1]⌋ 
∎⌋ 
▪️
๐Ÿ”น๐Ÿ”นdem²: Demonstration of [T3]
⌈ dem²
• ⊤ ?| [T3] ∀n > 0 ∈ โ„• ⋅ โ„ต₀ - n = โ„ต₀ 
[T2] ⟺ ∀n > 0 ∈ โ„• ⋅ โ„ต₀ + n = โ„ต₀
⟺ โ„ต₀ + n - n = โ„ต₀ - n
⟺ โ„ต₀ = โ„ต₀ - n
∴ ⊤| [T3] 
∎⌋ 
▪️
๐Ÿ”น๐Ÿ”นdem³ : Demonstration of [T5]
⌈ dem³
• ⊤ ?| [T5] โ„ต₀ - โ„ต₀ = โ„ต₀
∵ [T3] ∴ ๐‘™๐‘–๐‘šโ‚™→ ͚ ๐‘–๐‘‘โ„•(โ„ต₀ - n) = โ„ต₀ =
= โ„ต₀ - ๐‘™๐‘–๐‘šโ‚™→ ͚ ๐‘–๐‘‘โ„•(n)
= โ„ต₀ - โ„ต₀
∴ ⊤| [T5]
∎⌋ 
▪️
๐Ÿ”น๐Ÿ”น dem4: Demonstration of [T6]
⌈ dem⁴
• ⊤ ?| [T6] โ„ต₀ = -โ„ต₀
[T6] ⟺ โ„ต₀ + โ„ต₀ = โ„ต₀ -โ„ต₀
⟺ โ„ต₀ = โ„ต₀ -โ„ต₀ ⟺ ⊤| [T5]
∴ ⊤| [T6]
∎ ⌋ 
▪️
๐Ÿ”น๐Ÿ”นdem⁵: Demonstration of [T7]
⌈ 
• ⊤ ?| [T7] ∀ n ∈ โ„• ⋅ ๐‘™๐‘–๐‘šโ‚™→₋ ͚ ๐‘–๐‘‘โ„•(n) = โ„ต₀
Remind. [T1]: ๐‘™๐‘–๐‘šโ‚™→₊ ͚ ๐‘–๐‘‘โ„•(n) = โ„ต₀
∴ ๐‘™๐‘–๐‘šโ‚™→₋ ͚ ๐‘–๐‘‘โ„•(n) = - [๐‘™๐‘–๐‘šโ‚™→₊ ͚๐‘–๐‘‘โ„•(n)] = -โ„ต₀ = โ„ต₀ 
∎ ⌋ 
๐Ÿ”น ๐—ฅ๐—ฒ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€
▪️ โ„ต numbers - cardinality of well ordered infinite sets : https://en.m.wikipedia.org/wiki/Aleph_number
▪️ Riemann's Sphere : https://en.m.wikipedia.org/wiki/Riemann_sphere
▪️Logic symbols used in this article :
https://en.m.wikipedia.org/wiki/List_of_logic_symbols

๐Ÿ”ถ◾๐Ÿ”ธ▪️๐Ÿ”ถ⬛๐Ÿ”ธ⚜️๐Ÿ”ธ⬛๐Ÿ”ถ▪️๐Ÿ”ธ◾๐Ÿ”ถ

Commentaires